

Interferometry of class I methanol masers, statistics and the distance scale

Max Voronkov | Senior research scientist

Astronomy and Space Science www.csiro.au

Cagliari – 5 September 2017 With some help from: S.L. Breen, S.P.Ellingsen and C.H. Jordan

Australia Telescope Compact Array

Why interferometry?

• Essential to reduce biases

G329.03-0.20 (from Voronkov et al.; 2014, MNRAS, 439, 2584)

Surveys mentioned in this talk

- 1 Interferometric survey of southern masers, quasisimultaneously at 36 and 44 GHz = 2014 paper
 - Only ~23% of emission components detected in both transitions

```
(Voronkov et al. 2014, MNRAS, 439, 2584)
```

- 2 Follow-up of MMB 6.7 GHz masers at 36 GHz
 - Observed I=330-345, partially reduced
 - Many simple sources
- ③ Blind survey at 7mm (42-44 and 48-49 GHz) = MALT45
 - The survey itself used ATCA as 6 single dishes, but 44 GHz masers
 were followed up in the interferometry mode
 Found 42 courses without known measuresistion
 - Found 42 sources without known maser association (Jordan et al. 2015, MNRAS, 448, 2344 and Jordan et al. 2017, MNRAS, 471, 3915)

Velocity distribution – 2014 paper

- Middle of the 6.7 GHz velocity range often used as an estimate of the systemic velocity
- Small but significant mean
- High-velocity components are blueshifted and seen predominantly at 36 GHz
- MALT45: velocities of 44 GHz methanol masers vs. various molecular tracers (e.g. CS), $\sigma \sim 1.5$ km s⁻¹

Orientation? See the poster by Sobolev et al.

36 GHz: mean -0.57±0.06 km s⁻¹, σ =3.65±0.05 km s⁻¹ **44 GHz:** mean -0.57±0.07 km s⁻¹, σ =3.32±0.07 km s⁻¹

Distribution of the separations from YSO

The class II methanol maser at 6.7 GHz traces the YSO location

The distribution is well approximated as an exponential decay with 263±15 mpc scale

The same distribution within uncertainties for 36 and 44 GHz masers

Distance estimate?

Spatial spread and near/far distance

Dec (J2000)

G329.07-0.31

Class I masers can serve as a "statistical ruler" to help with near/ far distance ambiguity resolution

Linear offsets are expected to be well below 1 pc

Larger offsets probably mean that a wrong distance has been assumed

Distance estimate using class I masers?

Velocity and spatial spread – 2014 paper

Summary

- Class I masers trace well the systemic velocity
 - Better than the middle of velocity range of associated 6.7-GHz masers
 - The standard deviations for velocity offsets w.r.t. various dense gas tracers are about 1.5 km/s as opposed to about 3.5 km/s for the 6.7-GHz mid-range
 - There seem to be systematic offsets in velocity
- Linear separations of class I maser emission components from associated 6.7 GHz maser follow the exponential distribution with rather good accuracy.
 - Scale is 263±15 milliparsecs
 - It can be used to estimate distance (mean linear offset is the scale)
 - with decent number of "spots", this method is accurate to a factor of two
 - there are problems for distant sources. Not enough sensitivity/resolution?
 - hidden variables, e.g. evolutionary trends?
 - It can help to disambiguate kinematic distance (in reality, far -> near)

Thank you

Astronomy and Space Science Max Voronkov Senior Research Scientist

t +61 2 9372 4427
e maxim.voronkov@csiro.au_
w www.narrabri.atnf.csiro.au/people/vor010

Astronomy and Space Science www.csiro.au

