This slide is intentionally blank

Class I methanol masers in

G343.12-0.06

Maxim Voronkov

Australia Telescope National Facility

Class I methanol masers in

IRAS 16547-4247

Maxim Voronkov

Australia Telescope National Facility

Other people contributed to the project

VLT Observations, Infrared data K.J. Brooks S.P. Ellingsen **Evolutionary stages/analysis** J.L. Caswell Modelling A.M. Sobolev A.B. Ostrovskii 104 GHz survey(Mopra/Onsala) G.M. Larionov A.V. Alakoz

Energy levels

E-methanol 12 -122 10, $Energy, cm^{-1}$

 $\Delta J = 0, \pm 1$; $\Delta K = \pm 1$ $\Delta J = \pm 1$; $\Delta K = 0$ $J_{-2} - J_1$ series at \sim 101 GHz

$$\begin{split} \overline{\Delta J} &= 0, \pm 1 \text{ ; } \Delta \overline{K} = \pm 1 \text{ ; } A^{\pm} \leftrightarrow A^{\pm} \\ \Delta J &= \pm 1 \text{ ; } \Delta K = 0 \text{ ; } A^{\pm} \leftrightarrow A^{\pm} \\ \Delta J &= 0 \text{ ; } \Delta K = 0 \text{ ; } A^{\pm} \leftrightarrow A^{\mp} \end{split}$$

Known Class I maser transitions

Transition	Frequency	Reference
	GHz	
$9_{-1} - 8_{-2} E$	9.9	Slysh et al. (1993)
J_2 — J_1 E series	~25	Barrett et al. (1971); Menten et al. (1986)
$4_{-1} - 3_0 E$	36	Turner (1972)
$7_0 - 6_1 \; A^+$	44	Haschick et al. (1990)
$5_{-1} - 4_0 \; E$	84	Zuckerman et al. (1972)
$8_0-7_1~A^+$	95	Ohishi et al. (1986)
$11_{-1} - 10_{-2} E$	104	Voronkov et al. (2005)
$6_{-1} - 5_0 E$	133	Slysh et al. (1997)
$9_0 - 8_1 A^+$	146	Menten (1991a)
$8_{-1} - 7_0 E$	229	Slysh et al. (2002)

Two classes of methanol masers

E-Methanol energy level diagram

- A "northern" search for the 104 GHz masers brought only one obvious maser in W33-Met and 6 broad line sources (Voronkov et al., ApSS, 2005, 295, 217; astro-ph/0407275) out of 39 targets observed
- The situation with the 9.9 GHz masers was similar. Slysh et al. (ApJ, 1994, 268, 464) detected a maser in W33-Met and 2 broad line sources out of 11 targets observed

- New 104 GHz observations with the Mopra radio telescope: two new masers, 5 marginal detections and 3 broad line sources out of 69 targets observed
- Test ATCA observations at 9.9 GHz towards 104 GHz masers: one definite and one marginal maser detection. A normal survey: 3 more new masers out of 40 targets observed.

An ATCA search for 25 GHz masers

- J₂-J₁ E series
- These masers were believed to be rare (only 4 masers were known prior to this work).
- ATCA observations of the J=5 transition brought 67 detections out of 102 targets observed

An ATCA search for 25 GHz masers

- J₂-J₁ E series
- These masers were believed to be rare (only 4 masers were known prior to this work).
- ATCA observations of the J=5 transition brought 67 detections out of 102 targets observed
- There is no flux correlation with the widespread class I masers at 44 and 95 GHz.

ATCA observations of G343.12-0.06

- This is the only source, where masers were detected in all observed class I methanol maser transitions
- The source harbours a highly energetic collimated molecular outflow driven by a radio jet.
- In total, 12 maser transitions were observed in a short period of time: 9.9 GHz, 25 GHz (a series J=2 to J=9), 84 GHz, 95 GHz, and 104 GHz.
- Such observations are very important for maser modelling, but have never been done before.
- This is the first interferometric observation of the 9.9 and 104 GHz masers.
- This is the first detection of the 84 GHz maser as well as 7 transitions of the 25 GHz series in G343.12-0.06.

- Only one spot (B) is active in all observed transitions
- The three most southern spots show a clear association with the shocked gas traced by the H₂ 2.12 μ m emission associated with the radio jet and their velocities are close to that of the molecular core within which the jet is embedded

Spectra of the spot B

The rest frequency for the $9_{-1} - 8_{-2}$ E transition should be refined to 9936.2007 \pm 0.0007.

Brightness temperature exceeds 5.3×10^7 and 2.0×10^4 K at 9.9 and 104 GHz, respectively.

Masers at 84 and 95 GHz

F(95 GHz) = $(2.1 \pm 0.3) \times F(84 \text{ GHz}) + (2.6 \pm 2.5)$ • The additive term is not statistically significant.

The slope has an additional uncertainty of 30% (about 0.6) related to the absolute flux scale calibration.

In DR 21, the 95-GHz maser is approximately 5.5 times brighter than the 84-GHz maser (Batrla & Menten, 1988; Plambeck & Menten, 1990).

Maser models

R is the ratio of the integrated flux density to that of the J=5 transition at 25 GHz, τ is the optical depth and T_b is the brightness temperature.

Transition	ν	Observed	Model 1			Model 2		
	(GHz)	$\log(R)$	$\log(T_b,K)$	au	$\log(R)$	$\log(T_b,K)$	au	$\log(R)$
$9_{-1} - 8_{-2} E$	9.9	0.2	8.92	-17.9	-0.2	8.81	-19.1	0.5
$2_2-2_1 \; E$	25	-1.8	6.34	-10.1	-2.0	5.29	-9.9	-2.2
$3_2 - 3_1 E$	25	-0.1	7.98	-13.7	-0.4	7.36	-14.6	-0.2
$4_2-4_1 \; E$	25	0.1	8.27	-14.2	-0.1	7.56	-15.0	0
$5_2-5_1 \; E$	25	0	8.34	-14.3	0	7.55	-14.9	0
$6_2-6_1 \; E$	25	0.1	8.43	-14.5	0.1	7.36	-14.5	-0.2
$7_2 - 7_1 \; E$	25	0	8.47	-14.7	0.1	7.00	-13.7	-0.5
$8_2 - 8_1 \; E$	25	-0.1	8.45	-14.7	0.1	6.27	-12.2	-1.3
$9_2-9_1 \; E$	25	-0.3	8.45	-14.8	0.1	5.36	-10.2	-2.2
$5_{-1} - 4_0 E$	84	0.5	2.38	20.9	-4.9	6.95	-12.3	0.5
$8_0 - 7_1 \ A^+$	95	1.0	1.95	71.9	-5.2	6.83	-11.9	0.4
$11_{-1} - 10_{-2} E$	104	0.1	2.93	1.2	-4.2	5.58	-10.7	-0.7

- It is hard to explain relative brightnesses of the 25 GHz series simultaneously with the 84, 95 and 104 GHz transitions.
- Gradients? If yes, the projected scale is less than 300 AU.

- No 6.7 GHz maser has been detected in this source, although there are H₂O and OH masers near the central source
- Ellingsen (2006, ApJ, 638, 241) has found that the sources associated with class I masers have redder GLIMPSE colours ⇒ they are younger
- The OH maser is present \Rightarrow an evolved stage
- Is the source too young or too old to have a 6.7 GHz maser?

- The source driving jet/outflow/masers has no associated GLIMPSE source.
- Another bright source is present in the 5.8- μ m and 3.6- μ m GLIMPSE images. This source dominates in the 12- μ m MSX band as well.
- The 21- μ m emission is centred on the central continuum source \Rightarrow it is deeply embedded and young

- Warm dense gas, rich in methanol is enough for class I masers ⇒ they can appear at the very early evolutionary stage
- Class I masers do not depend on shocks once the methanol abundance is increased ⇒ they can last long
- Class II masers need an infrared source for pumping ⇒ they are located near the (proto)star and can be destroyed more easily.

Summary

- The class I methanol maser emission consists of a cluster of 6 spots spread over an area of 30" in extent. Five spots were detected in only the 84- and 95-GHz transitions (for two spots the 84-GHz detection is marginal), while the sixth spot shows activity in all 12 observed transitions.
- The three most southern maser spots show clear association with a jet-driven molecular outflow. Their velocities are close to that of the molecular core within which the jet is embedded. This fact supports the idea that the class I masers reside in the interface regions of outflows.
- Comparison with OH and H₂O masers, infrared data, and the lack of class II methanol maser at 6.7 GHz suggest that the evolutionary stage where the class I masers are present may last longer than that with the class II masers. The evolutionary status of this source is not clear at present: the presence of the OH masers usually means that the source is evolved, but the infrared data suggest otherwise.
- We report the first interferometric observations of the rare 9.9- and 104-GHz masers. It is shown that the spectra contain a very narrow spike and the brightness temperature exceeds 5.3×10^7 and 2.0×10^4 K at 9.9 and 104 GHz, respectively.
- High spectral resolution data leads us to suggest that the rest frequency for the $9_{-1} 8_{-2}$ E transition should be refined to 9936.2007 ± 0.0007 .