4th Australian SKA Simulators Workshop, 11 July 2005

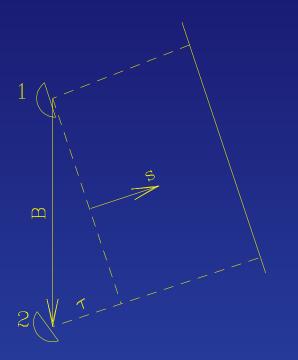
Non-Inertial Reference Frame and Dynamic Range Limit

Maxim Voronkov

(a part of the bigger project conducted in collaboration with Mark Wieringa and Tim Cornwell)

Australia Telescope National Facility

Non-Inertial Reference Frame and Dynamic Range Limit - p.1/10



Basics of interferometry:

 Monochromatic plane wave, single polarization, no primary beam effects

$$V\sim \exp\left(-2\pi i
u au
ight)$$
 , $aupprox rac{\left(\overrightarrow{s}\overrightarrow{B}
ight)}{c}$

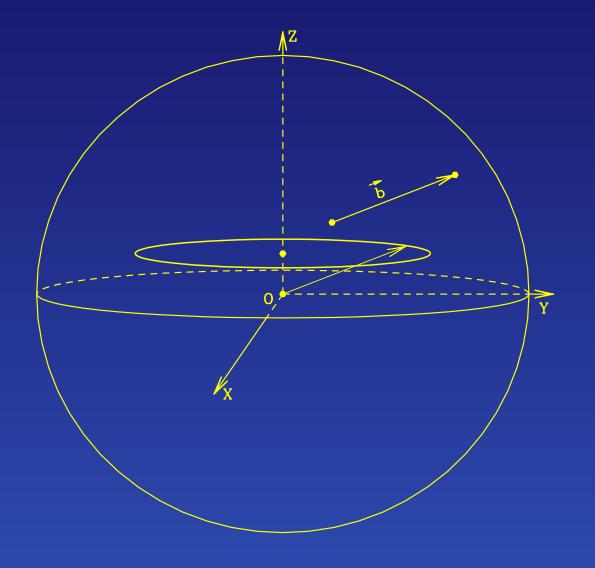
Phase-tracking interferometer

$$\overrightarrow{s} = \overrightarrow{s_0} + \overrightarrow{\delta s}$$
$$\overrightarrow{B} = \overrightarrow{R_2} - \overrightarrow{R_1}$$

$$V\sim \exp\left(-2\pi i
u\Delta au
ight)$$
 , $\Delta aupproxrac{\left(\overrightarrow{\delta s}\overrightarrow{B}
ight)}{c}$

• Convenient coordinate system

$$\overrightarrow{B} = \overrightarrow{(u, v, w)}, \ \overrightarrow{\delta s} = \overline{\left(l, m, \sqrt{1 - l^2 - m^2} - 1\right)}$$



 \mathcal{U}

 \mathcal{U}

 \mathcal{U}

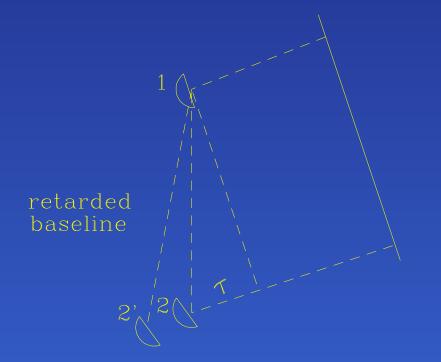
 A very simple model is used in most software simulators to calculate the spatial frequencies probed by each baseline

• A baseline vector $\overrightarrow{b} = (L_X, L_Y, L_Z)$ is transformed to a different coordinate system (u, v, w)for a given hour angle Hand declination δ

 However, an inertial reference frame is required!

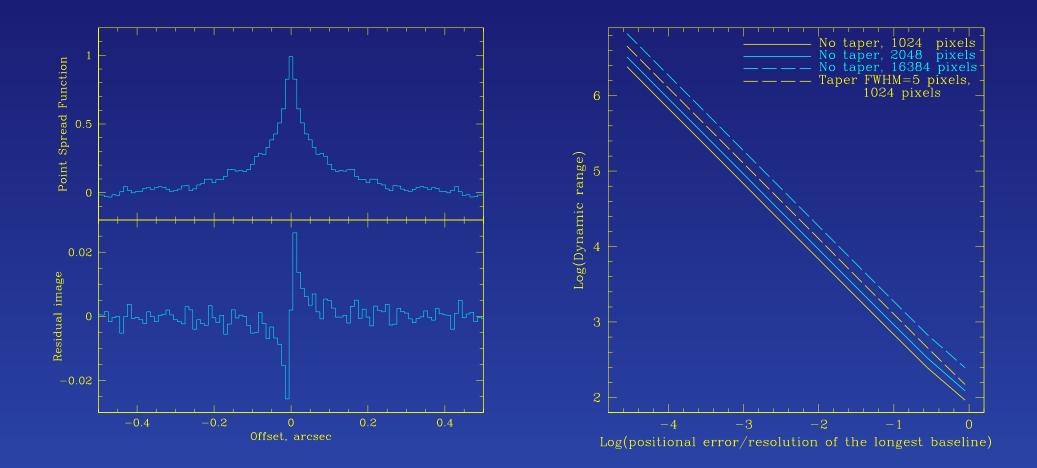
 $\begin{cases} \sin H & \cos H & 0 \\ -\sin \delta \cos H & \sin \delta \sin H & \cos \delta \\ \cos \delta \cos H & -\cos \delta \sin H & \sin \delta \end{cases} \begin{pmatrix} L_X \\ L_Y \\ L_Z \end{pmatrix}$

- VLBI Astrometry: a direct modelling of the geometric delay
 - Baseline length is calculated in the barycentric frame, which is assumed to be inertial
 - Weak effects like the gravitational delay, the length contraction, and the time retardation are taken into account
- A typical measurement accuracy is about 30–50 ps. Current relativistic VLBI theory provide an accuracy of about 1 ps (see e.g., Kaplan 1998, ApJ, 115, 361; Soffel et al. 1991, AJ, 101, 2306).
- Good thing: only differential effects can affect the dynamic range

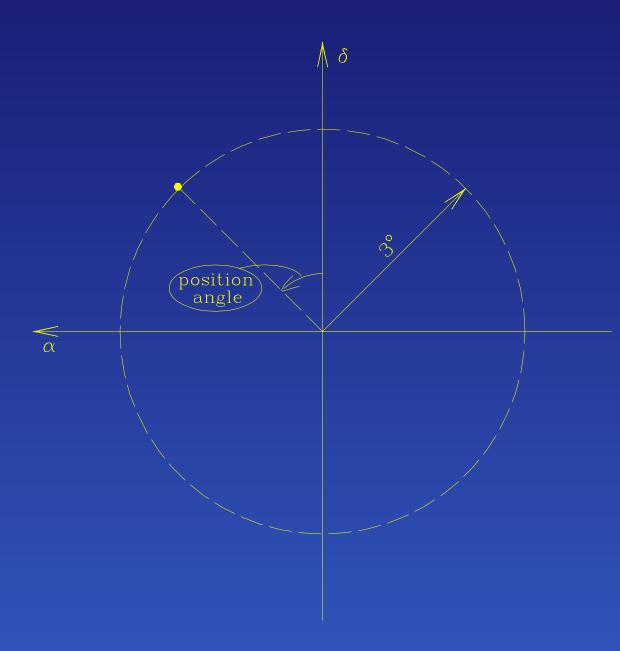


Non-inertiality produces:

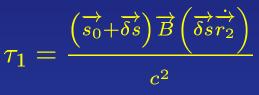
- Time-average smearing
 - Not a problem
- Retarded baseline effect
- Differential Doppler shift



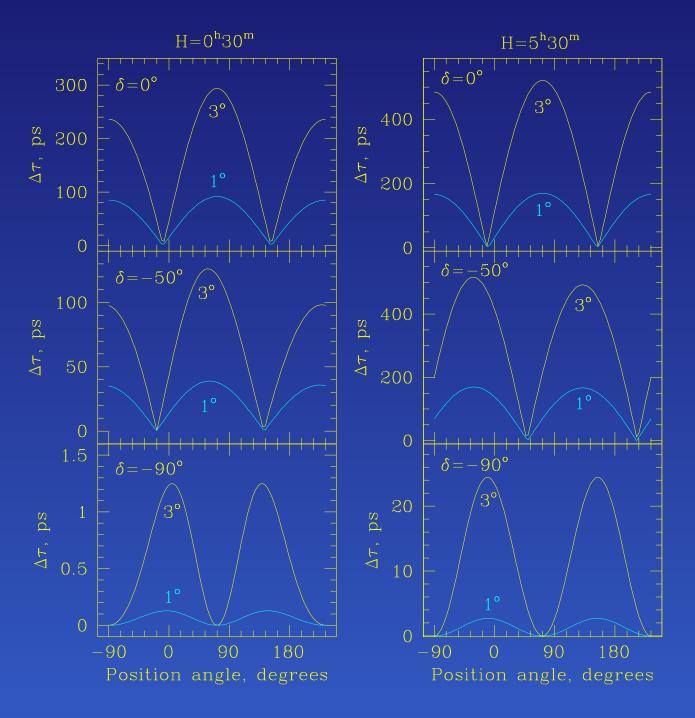
- Due to positional error the residual emission does not vanish
- If a dynamic range as high as 10⁶ is required, unaccounted baseline-dependent or time-dependent delays in the field of view should be less than 0.1 ps



 First order estimate, semi-classical derivation

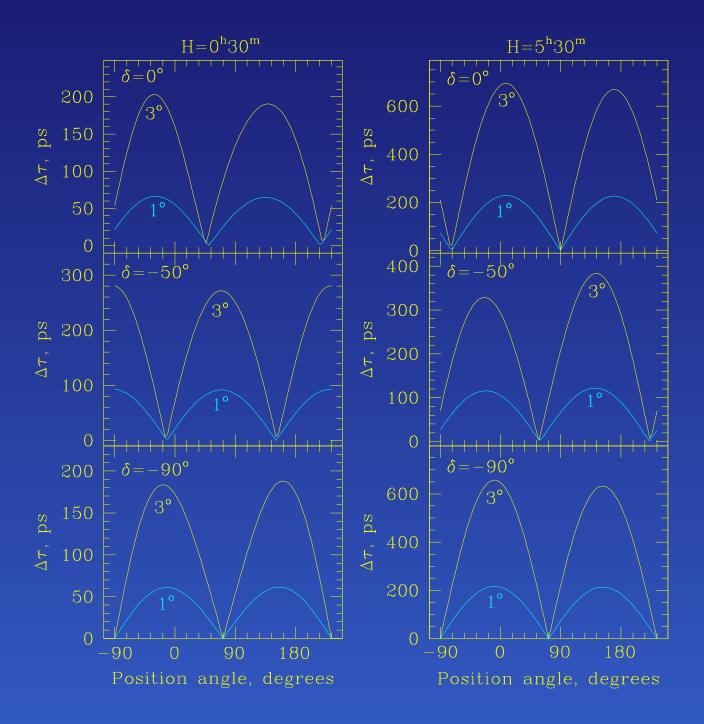


- An additional delay caused by retarded baselines depends on the position in the image and the baseline
- There is a position angle where the effect is small



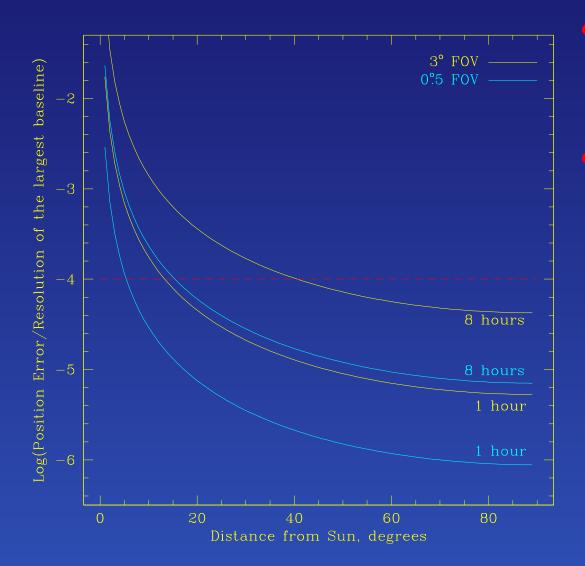
- The figure shows

 an additional delay
 at 1° and 3° offsets
 from the phase
 centre versus the
 position angle
- East-West 3000 km baseline



- The figure shows

 an additional delay
 at 1° and 3° offsets
 from the phase
 centre versus the
 position angle
- North-South
 3000 km baseline



Differential gravitational bending \rightarrow time-dependent distortion First order estimate for position accuracy, short observations ($\ll 1$ year) $rac{2ig(1+\gamma ppnig)GM_{\odot}\Delta\phi}{c^2R\sin^2\phi_0}\dot{\phi}_0t_{obs},$ $\phi_0, \dot{\phi}_0$ – the angular separation between the phase centre and the Sun and its rate $\Delta \phi$ – the source distance from the phase centre γ_{ppn} – post-Newtonian parameter (=1 in GR)

Summary

- Retarded baseline effect is able to limit the dynamic range. For 1.4 GHz observations with 3000 km baselines, a dynamic range of about 10⁶ can be achieved for a field of view as narrow as 12".
- Differential gravitational bending may also be important for long observations
- These limiting factors are not fundamental because algorithms dealing with the *w*-term can be modified to solve the problem. However, this is an additional complication for the software.
- Differential Doppler shift is unlikely to be a problem
 - Quadratic dependence on the offset \rightarrow small magnitude (< 2 × 10⁻³ km s⁻¹ at 3^o)
 - May be important for very narrow spectral line observations, where ultra-high dynamic range is not required