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Introduction

The discovery of a small number of periodically variable 6.7-GHz
methanol masers has been an intriguing find of the last decade.
The theory of these periodic flare events is still in an early stage
of development, but appears to require the presence of multiple
high-mass stars forming, or substantial inhomogeneities in the
accretion disc around a single high-mass star (e.g. van der Walt
et al. 2009; Sobolev et al. 2007). Using the Australia Telescope
Compact Array, by simultaneous monitoring of two, differently
pumped, maser transitions of methanol, we hope to be able to
determine the source of the variability: the infrared radiation
which pumps the 6.7-GHz maser quenches the emission of the
9.9-GHz maser. Hence if both transitions have correlated flares,
the origin of the variability is the underlying continuum emission.

The target source: G331.13-0.24

• One of the few known periodically variable  6.7-GHz masers
(see Figure 1) with the longest period of about 512 days among
all such masers.
• The only currently known star-forming region which hosts both
the periodically variable 6.7-GHz methanol maser and a 9.9-GHz
methanol maser.
• Masers are projected onto an HII region (see Figure 2) and are
not co-located. Flares of different 6.7-GHz spectral features are
delayed with respect to each other by up to two weeks.
• The pumping mechanisms of the 9.9-GHz and 6.7-GHz masers
are in conflict: the former is pumped by collisions and the latter
by infrared radiation.
• Both 9.9-GHz and 6.7-GHz masers are expected to react the
same way to the change in continuum emission.

Figure 1: Light curves for selected spectral features of the 6.7 GHz maser in G331.13-0.24 obtained with
Hartebeesthoek radio telescope (Goedhart et al. 2004 and some more recent monitoring data obtained by the
same team)

Figure 3: Results of the ATCA monitoring of masers in G331.13-0.24: light curves of the 9.9-GHz maser and one
of the strongest spectral features (-84.30 km s-1) at 6.7-GHz.

Conclusion

We present the first year of monitoring data which has revealed
a quasi-simultaneous dip in the light curves of both transitions.
This dip likely points at dimming of the HII region. There is also
a hint of a monotonic fall of the 9.9-GHz flux towards the end of
the time series, which is coincident with the rise of the 6.7-GHz
flux (-84.3 km s-1 feature). Unlike for the dip, this points to a
pumping disturbance (most likely a boost of the infrared flux).
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Figure 2: The morphology of G331.13-0.24. Background is the 4.5-µm Spitzer IRAC image (green ellipse shows
the area of a notable excess of the 4.5-µm emission), open squares show positions of the different features of the
6.7-GHz maser, crosses represent different position measurements of the 9.9-GHz masers (for more information
see Voronkov et al. 2010). The 8-GHz continuum image of Phillips et al. (1998) is shown by contours.
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