

Studies of Methanol Masers with ATNF Facilities

> Maxim Voronkov (Maxim.Voronkov@csiro.au)

CSIRO - Australia Telescope National Facility

UWA - Perth, 31.10.2008

• What is a maser?

- A spectral line formed under special conditions (population inversion)
- Strong masers have narrow lines
- High brightness temperature

- Maser action is possible in a limited number of molecular transitions
- In general, it is harder to create a maser at high frequency (ALMA is unlikely to find many new masers)
- Different masers have different behavior, a presence of a particular maser says something about physical conditions
- Bright masers are often used as tools (e.g. to locate regions of starformation, to measure the parallax, to be a calibrator source, etc)

Where do we find masers?

- Star-forming regions in our Galaxy
 - High-mass (OH, H₂O, methanol (both classes), NH₃, a few SiO)
 - Low- and intermediate-mass (OH, H₂O, class I methanol)
- Supernova remnants (OH)
- Late-type stars and circumstellar environment (OH, H₂O, SiO, SiS, probably HCN)
- Extragalactic masers

(also known as kilomasers, megamasers, etc)

- Star-forming regions in LMC (OH, H₂O, class II methanol)
- Late-type stars in LMC (SiO, OH)
- Star-forming regions in other galaxies (OH, H₂O)
- galactic nuclei (H₂O)

I will concentrate on methanol masers...

Why methanol is so exciting?

- Large number of observed transitions
 - with a different behavior
- Some masers are very strong (second strongest after H₂O masers)
 good VLBI targets
 - Masers are more stable than H₂O masers
 - monitoring is getting easier
- Simplest organic molecule
 - links with astrochemistry

Energy levels of methanol

E-methanol

A-methanol

 $\Delta J = 0, \pm 1$; $\Delta K = \pm 1$ $\Delta J = \pm 1$; $\Delta K = 0$ $J_{-2} - J_1$ series at ~ 101 GHz

 $\Delta J = 0, \pm 1; \Delta K = \pm 1; A^{\pm} \leftrightarrow A^{\pm}$ $\Delta J = \pm 1; \Delta K = 0; A^{\pm} \leftrightarrow A^{\pm}$ $\Delta J = 0; \Delta K = 0; A^{\pm} \leftrightarrow A^{\mp}$

Pumping

K = -1

- Class I masers ⇒ collisional pumping
- Class I masers ⇒ pumping by the dust radiation
- Strong masers of different classes should never co-exist in the strict theoretical sense (or co-propagate in other words)
- Masers of different classes are often present in the same star-forming region at some distance from each other. A projection to the same apparent direction is also possible
- The case of weak masers requires a special study

Known Class I maser transitions

	Transition	Frequency	Reference
		GHz	
•	$9_{-1} - 8_{-2} \; E$	9.9	Slysh et al. (1993)
•	$J_2 - J_1 E$ series	>24.9	Barrett et al. (1971); Menten et al. (1986)
•	$4_{-1} - 3_0 \; E$	36	Turner (1972)
•	$7_0 - 6_1 \; A^+$	44	Haschick et al. (1990)
•	$5_{-1} - 4_0 \; E$	84	Zuckerman et al. (1972)
•	$8_0-7_1 \;A^+$	95	Ohishi et al. (1986)
•	$11_{-1} - 10_{-2} \; E$	104	Voronkov et al. (2005)
•	$6_{-1} - 5_0 E$	133	Slysh et al. (1997)
•	$9_0 - 8_1 \text{ A}^+$	146	Menten (1991a)
•	$8_{-1} - 7_0 E$	229	Slysh et al. (2002)

Known Class II maser transitions

	Transition	Frequency, GHz	Reference
•	$5_1 - 6_0 \; A^+$	6.7	Menten (1991b)
•	$2_0 - 3_{-1} E$	12.2	Batrla et al. (1987)
•	$2_1 - 3_0 E$	19.9	Wilson et al. (1985)
•	$9_2 - 10_1 \; A^+$	23.1	Wilson et al. (1984)
•	$8_2 - 9_1 \ A^-$	28.9	Wilson et al. (1993)
•	$7_{-2} - 8_{-1} \; E$	37.7	Haschick et al. (1989)
•	$6_2 - 5_3 \ A^-$	38.2	Haschick et al. (1989)
•	$6_2 - 5_3 \; A^+$	38.4	Haschick et al. (1989)
•	$6_{-2} - 7_{-1} \; E$	85.5	Cragg et al. (2001)
•	$7_2 - 6_3 \text{ A}^-$	86.6	Cragg et al. (2001)
•	$7_2 - 6_3 \; A^+$	86.9	Cragg et al. (2001)
•	$3_1 - 4_0 \; A^+$	107	Val'tts et al. (1995)
•	$0_0-1_{-1} E$	108	Val'tts et al. (1999)
•	$2_1 - 3_0 A^+$	156.6	Slysh et al. (1995)
•	$J_0 - J_{-1}$ E series	~157	Slysh et al. (1995)

Science: searches for new masers

- Widespread transitions
 - I 1. Active project: search towards low-mass star-forming regions.
 - 2. Active project: 95 and 84 GHz search (Ellingsen et al.)
 - I Mostly masers appearing under unusual circumstances
 - 1. Voronkov et al. 2005, MNRAS, 362, 995 6.7 GHz in Orion,
 - 2. Minier et al. 2003, A&A, 403, 1095 6.7 GHz towards
 - low-mass star-forming regions
- Blind surveys
 - I 1. Active project: Mopra untargeted survey (Pratap et al.)
 - II 2. Active project: 6.7 GHz Methanol multibeam (Green et al.)
- Rare/weak masers
 - I 1. Active projects: 9.9, 25 and 104 GHz search (Voronkov et al.)
 - II 1. Ellingsen et al. 2003, MNRAS, 344, 73 85.5 and 86.6 GHz,
 - 2. Ellingsen et al. 2004, MNRAS, 354, 401 19.9 GHz,
 - 3. Cragg et al. 2004, MNRAS, 351, 1327 23.1 GHz

Search towards low-mass star-forming regions at 36 and 44 GHz: BHR71

Searches for 9.9 and 104 GHz masers

Search for 25 GHz masers

Methanol multi-beam project

- Unbiased survey of the Galactic plane (*l* from -174 to +60 degrees, *b* from -2 to +2 degrees) at 6.7 GHz
- Census of the massive star formation in the Galaxy
- LMC and SMC observed when the galactic plane was not visible
- In total, 941 detection, 567 known and 374 new masers
- Completeness about 80% ⇒ in line with population estimate of 1200 sources.
- Overall detection rate 0.9 sources per deg²
- Magellanic Clouds part is published: Green et al., 2008, MNRAS, 385, 948, techniques paper accepted (Green et al.)
- Future plans/priorities:

Galactic centre (most likely -15 to +20 degrees) Northern region (latitude +20 to +40 degrees) The rest of the southern sky

Methanol multi-beam project

- Velocity versus longitude
- Red dots new detections,
- Black dots previously known sources
- Open circles CS 2–1 emission sources (Bronfman et al.,1996)
- Latitude distribution
- Solid histogram– all sources,
- Dashed histogram previously known sources
- Gaussian fit has FWHM of 0.6 degrees

Science: Absolute positions

- VLBI astrometry
 - Parallaxes, proper motions
 - Structure of class II masers
- ATCA resolution is enough to search for identification with other phenomena in star-forming regions
 - Accurate positions for rare masers
 - Search for association of class I masers with shocks/outflows
 - Such search is largely limited now by images of the shock tracers, as more and more masers have their accurate positions measured

• Thermal environment of methanol masers

This is also important for modelling (state of quiescent gas surrounding the maser)

Example: class II maser in Orion-South

 The -1.1 km/s feature is associated with an outflow found by Zapata et al. (astro-ph/0505045)

The maser is here

Astrometry and multi-transition study

G343.12-0.06 (IRAS 16547-4247)

- Association of class I masers with the outflow
- Spots are spread over a large area: need an interferometer to study relative fluxes
- Need spectral resolution of 0.02 km/s or better

Spectra of the spot B

- Large number of transitions observed allows to test pumping models
- Theory predicts relative fluxes ⇒ parameter estimate
- Narrow spike at 9.9 and 104 GHz

4 regimes of the Class I methanol masers

Poster at IAUS227 (Sobolev et al.)

- The 36 GHz and 84 GHz transitions are the brightest. This is the most widespread regime, but masers are weak.
- The 44 GHz and 95 GHz transitions are the brightest. This regime requires a high beaming (elongated geometry).
- 3. The transition series near 25 GHz is the brightest. This is a rare regime and requires a high methanol column densitiy and relatively high temperature and hydrogen density.
- 4. The 9.9 GHz and 104 GHz transitions are the brightest. The parameters are similar to 3, but a greater beaming and either lower density or higher temperature are required.

Monitoring of class I and class II masers in G331.132-0.24

- A few class |I methanol masers at 6.7 GHz are known to show periodic flares
- The nature of these flares still remains a mystery
- Class I and class II masers have different pumping mechanisms and react on a pumping disturbance in the opposite sense
- We started a long term monitoring of the 9.9 GHz maser (class I) in this source

Summary

• ATNF instruments are involved in a range of maser surveys

- Unbiased survey of class II masers at 6.7 GHz
- Targeted searches for various rare class I masers: 9.9, 25, 104 GHz
- Pilot blind survey at 44 GHz
- Pilot survey of low-mass star-forming regions at 36 and 44 GHz
- Accurate positions and multi-transition follow-up allow to
 - Search for associations (e.g. class I and outflows)
 - Study the pumping mechanism of class I masers and possibly characterize the geometry of the source
- Combined monitoring of class I and class II transitions may shed light on the nature of periodic flares

Acknowledgments

J.L. Caswell, K.J. Brooks, S.P. Ellingsen, A.M. Sobolev, S.Goedhart, A.B. Ostrovskii, J. Green + the rest of the MMB team