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Preamble:

The Turbulent ISM

A description of turbulence: its role and importance
Observations of the SMC & technigue

Caveats & future work
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The turbulent Interstellar Medium

The ISM is best traced with Neutral
hydrogen (HI)

Energy injection/distribution
— reshapes ISM at all scales.

Mixing of the ISM

— distribution/enrichment of metals

Influences SFE

— Turbulent support against core collapse
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Characterising Turbulence

The ISM 1is almost ALWAYS turbulent  ©

— Large scales, low viscosity
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Characterising Turbulence

Fractal nature of the ISM:

— Quter scale: The largest scale at which
energy transfer occurs:

 Spiral arms, Colliding systems

— Inner scale: The smallest scale at which
damping 1s significant

— Reynolds number becomes ~1
» ~molecular level (dept. on T, P etc.).

» Energetic processes re-organise
the ISM —eg. SNe




The effects of Starformation/SNe

Early stages: core clumping of the ISM.
Stellar winds — sweeping/heating the ISM
PNe, SNe, shells and shell fragmentation
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Ryan Joung & Mac Low,
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Why the SMC?

Far enough - ~Parallel lines of sight

Close enough — high spatial resolution

Active starforming region in the SW SMC

Among largest known HI column densities
— ~10%2 cm™.

Augment with existing HI data:
— Stanimirovic: ATCA+Parkes

Accessible resolution: ~2-3 pc

Problems
— Possible large line of Sight depth. Stanimirovic: http://www.atnf.csiro.au/research/smc_h1/
— Optical depth.
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The Energetic Southwest SMC.
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Courtesy: Karl Gordon Muller & Jones, In prep
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Target observations.

Dzelinatlon (J2CO0)

Three overlapping positions
7x12 hr @ 6B, 2x12 hr # 750A

Beamsize ~5 arcsec (@ 3K/chan (6.7 km/s)

Missing short spacings not necessary
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Total power

Veloelty: +144.04 Em /s

Veloelty: +145.44 km /s _rrpeg e
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SMC Spatial power spectrum

131-152.4 km s™

Average power (Jy’)
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Calculating the SPS

‘ blank (=1) dataset (same
Multiply Data with dimensions of ISM dataset)
‘Apodizing’ mask

Create tapered dataset

<Input ISM dataset>
Create zero-padded, >

Dummy gaussian, psf~20 pix@




Early, Hi-resolution Power Spectrum
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Coping with optical depth.

» Optical depth presents a

significant challenge: 0 ' ' ' ' '
Peak HI.
— Absorption appears to be more 05 9&
important at small scales. (e.g.

Gibson et al, 2000).

— Artificial steepening of the

SPS at small scales. 300 K

Fractional error
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The extended SMC
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Summary

» Highest-yet resolution observations of the SMC.

(and the highest possible, until SKA)

* Powerspectrum index of (~-3) appears to extend
into high frequencies

* Not possible to exclude excess power at <10pc

» Refinement of process still underway.
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