# Origin of the old globular cluster system in the LMC



Kenji Bekki (UNSW, Australia)

### GCs and Globular cluster systems (GCSs)





GC:47 Tuc

GCS properties: Space distributions , Kinematics, Metallicity.....

#### Globular cluster systems (GCSs) in different Hubble types.



#### **Spiral: M31**



#### **Irregular: LMC**



**Elliptical:M87** 

#### **GC-less galaxies.**







**M32** 

Why merging/accretion in the Galaxy formation (Searle & Zinn 1978; SZ)?: GCs as fossil records of the Galaxy formation.

- No significant metallicity gradient in the Galactic GC.
- A possible broad range of age in the outer halo GCs etc... (SZ 1978).



Radius (kpc)

The chaotic merging/accretion scenario (Searle & Zinn 1978)

A big question:

# What do physical properties of the GCS of the LMC tell us about the LMC formation ?

A specific question:

# Origin of the observed kinematical differences between the stellar halo and the old GCS in the LMC.

## Rotational kinematics in the old GCS of the LMC (Freeman et al. 1983)?



 $V_{rot} \sim 41$  km/s,  $\sigma \sim 17$  km/s,  $V/\sigma \sim 2.4$ 

### Rotational kinematics in the LMC'S GCS.



(Freeman et al. 1983)



#### (Grocholski et al. 2006)

## The *old* stellar halo properties in the LMC.

- $V_{rot}$ <10 km/s for the stellar halo (for RR Lyrae stars),  $\sigma$ ~53 km/s, and V/ $\sigma$ <0.2 (e.g., Minniti et al. 2003).
- An exponential (projected) radial density profile (e.g., Alves 2004).
- A flattened inner stellar halo (Subramaniam 2006) ?

The non-rotating stellar halo vs the rotating old GCS in the LMC? LMC GCS: V/o~2.4 Halo: V/o~0.2 GC O  $\star$   $\star$   $\star$ Halo field stars **LMC**  $\begin{array}{c} \star \bullet \\ \star \bullet \\ \star \end{array} \begin{array}{c} \bullet \\ \star \end{array} \begin{array}{c} \bullet \\ \star \end{array} \end{array} \begin{array}{c} \bullet \\ \star \end{array}$ 

The non-rotating stellar halo vs the rotating old GCS in the LMC



### GCS: $V/\sigma \sim 2.4$ Halo: $V/\sigma \sim 0.2$

The Galaxy

### GCS: V/ $\sigma$ ~0.3 Halo: V/ $\sigma$ ~0.3

(e.g., for  $\sigma_r/v$ ; Freeman 1993)

**Question:** 

Are these kinematical properties consistent with the LMC formation model (based on the ΛCDM) ?

(1) Bekki (2007): galaxy-scale simulations(2) Bekki & Yahagi (2007): Large-scale ones.



### The formation of the LMC's GCS.

(1) GCSs from 100 Mpc-scale simulations (e.g., Yahagi & Bekki 2005)(2) GCSs from galaxy-scale simulations (Bekki 2007).





### GC/field star formation in low-mass galaxies embedded by dark matter halos at high redshifts (z > 6)**Protogalaxy** Z > 6 **Field stars 200 kpc** GC All halos with masses larger than ~ $10^7 M_{sun}$ have GCs. **Dark matter halo**

# Can we find a model with the GCS having V/ $\sigma \sim 2$ ?

2 K. Bekki

| Table 1. Model parameters and a brief s $\lambda$ ry $\delta_{i}$ results $\mathbf{z}_{trun}$ |                                               |      |      |        |          |                                            |                                        |
|-----------------------------------------------------------------------------------------------|-----------------------------------------------|------|------|--------|----------|--------------------------------------------|----------------------------------------|
| model                                                                                         | $M_{4} (\times 10^{10} {\rm M_{\odot}})^{-6}$ | 2 4  | 61 C | Nmin d | ztrus. e | $\left(\frac{V}{\sigma}\right)_{\rm po} f$ | $\left(\frac{V}{\sigma}\right)_{cc} g$ |
| Standard                                                                                      | 6.0                                           | 0.08 | 0.39 | 32     | 15       | 0.34                                       | 0.39                                   |
| Low density                                                                                   | 6.0                                           | 0.08 | 0.19 | 32     | 15       | 0.60                                       | 0.56                                   |
| High threshold                                                                                | 6.0                                           | 0.08 | 0.39 | 1000   | 15       | 0.28                                       | 0.22                                   |
| Low-z truncation                                                                              | 6.0                                           | 0.08 | 0.39 | 32     | 10       | 0.19                                       | 0.21                                   |







Results: Spatial distributions of the stellar halo and the GCS in the LMC







### Spatial distributions of the low- $\sigma$ (initial low density) model.

More flattened...



Inconsistency between simulations and observations.

 $(V/\sigma)_{GC}$ 

### Obs: $V/\sigma \sim 2.4$ Sim: $V/\sigma \sim 0.3$

Discussions: Lessons from unsuccessful models.

- No/little GC formation in low-mass halos at high-z (>6) : the presence of the threshold halo mass for GC formation ?
- ``Dissipative'' GC formation at the very early epoch of the LMC's disk formation : The LMC's GC are slightly younger than the Galactic counterparts ?

### Discussions: Two related problems.

- Why do less luminous galaxies have GCSs with rotation (e.g., Olsen et al. 2004 for galaxies in the Sculptor group) ?
- Why do the GCS/stellar halo in the Galaxy appear to show no/little kinematical differences ?

## Conclusions: Still mysterious GCS kinematics in the LMC

- Failures of the present LMC formation models in reproducing the rotational kinematics of the LMC's GCS.
- A possible threshold halo mass for GC formation and GC formation at the very early epoch of the LMC's disk formation ??