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I will present here the Monge-Ampère-Kantorovitch peculiar velocity reconstruction method applied to mock catalogues mimicking some observational biases encountered in

real life. The method is then applied to a 3000 km/s deep galaxy catalogue to recover the peculiar velocities of these galaxies in our neighbourhood.

I. Introduction

Objective: Recovering individual velocities of galaxies from their redshift po-
sition z = Hx + v · x

||x||
, with x its comoving position, v its velocity, H

the Hubble constant. Comparison to larger Local Volume measurements may
yield new constraints on M/Ls.
Poster is organized as follows:

• Short presentation of the Monge-Ampère-Kantorovitch Lagrangian recon-
struction method + Algorithm.

•Test on large-scale simulations.

•Two examples of observation biases to which the method is sensitive:

– Catalogue geometry limited by visibility of objects → general boundary
problem (limited access to gravity field and velocity field variance).

– Unknown distribution of the diffuse mass (i.e. M . 1011−12 M⊙).

•A direct application to NBG-3k follows, which shows the reconstructed ve-
locities in our neighbourhood.

II. The Monge-Ampère-Kantorovitch (MAK) reconstruction

Theory
Motivation: Zel’dovich approximation (Zel’Dovich, 1970), which is the first
development order in the Lagrangian perturbation theory, works really well on
Large scales. It leads to considering the displacement field of the dark matter
from initial conditions is deriving from a convex potential. We remind that in
general Zeldovich approximation writes x(q, t) = q + D(t)Ψ(q), with x the
current position, q the initial position, D(t) the linear growth factor.
Hypothesis: the displacement field traced by galaxies is deriving from a convex
potential.
Problem: Find the corresponding displacement field given an initial (homoge-
neous) density field and the current observable density field.
⇒ Brenier et al. (2003) shown that the minimization of

Sσ =

N
∑

i=0

(

xi − qσ(i)

)2
(1)

according to σ solves the above problem, with i representing an homogeneous
sampling of the mass distribution, where the xi are the current positions of
these particles, and the qj are distributed on a regular grid. An illustration of
the minimization is given Fig. 1.
⇒ i-th velocity recovered using Zel’dovich approximation

vi = βΨi with β ≡ Ω
5/9
m (2)

Figure 1: Minimization process: galaxies are pictured on the left and
their corresponding Lagrangian domain is on the right (qs)

Algorithm
Minimization of Eq. (1) is a computationally difficult problem (time complexity
O(N !)) → in Bertsekas (1979), “Auction” algorithm is minimizing cost-flow
problems and can be adapted to minimization of Eq. (1) ⇒ Time complexity
in O(N2.25). Particles i, put at xi, compete against other particle j to acquire
the Lagrangian position qk. k is given to i if it represents the best assignment
globally. When the equilibrium is reached, the current assignment corresponds
to the solution of minimizing Eq. (1). However efficiency depends a lot on the
degeneracy of the solution.
Implementation
On Dual-core AMD Athlon64 4800+, SMP implementation: 79,000 particles
⇔ 50 mins. A MPI version of the corresponding algorithm has also been
implemented but only performant for sufficiently large number of particles or
denser problems (N/V & 1 hMpc−3).

III. Application to cosmological simulation
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Figure 2: Top left: A slice of the density field of the ΛCDM simulation
(Ωm = 0.30,ΩΛ = 0.70,σ8 = 1.0) that is used for the tests (color coding
in log scale). Top right: Velocity field of the same slice. Bottom right:
MAK reconstructed velocity field of the same slice. Linear color scale:
dark blue=-1000 km.s−1, white=+1000 km.s−1. Bottom left: Scatter
distribution while comparing P (vr, vsim) of the individual objects velocity
fields in the right column. (color coding in log scale). The reconstruction
is actually giving the right velocity field above 3-5h−1Mpc.

IV. Outer boundary / Recovering Lagrangian domain

Figure 3: Reconstruction setup when one does not know the La-
grangian domain q of a catalogue of mass tracers (ball painted with
galaxies). Left (NaiveDom MAK reconstruction): One assumes that
the geometry of the catalogue is conserved between t = 0 and t = t0.
The MAK reconstruction is achieved between the catalogue and the
right crystal sphere. Right (PaddedDom MAK recontruction): The
catalogue is padded homogeneously to smooth out boundary effects
(crystal box). The padded catalogue is MAK reconstructed using the
the right crystal box.

Finite volume catalogues ⇒ unknown Lagrangian volume (⇔ unknown
large scale tidal fields) ⇒ miss-reconstruction of trajectories of galaxies.

Screening of the gravitational field by fluctuations of the density field has 2
consequences:

⊕ Different correction scheme to handle edge effects should not cause dis-
turbance at the center of the catalogue.

⊖ Buffer zone between mis-reconstructed MAK solution (due to edge effects)
and the unaffected solution may be big (> 20 Mpc/h).

Proposed solution: Padding the original “spherical” catalogue as illus-
trated in Fig. 3 and assuming a cubic Lagrangian domain of the same size
→ Real space reconstruction results are given in Fig. 5.

Result: Given in Fig. 4. The central part of the velocity field is well recon-
structed in both cases (NaiveDom and PaddedDom). Individual velocity
comparison shows that NaiveDom is still a worse boundary condition than
PaddedDom.
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Figure 4: Outer boundary problems while doing reconstruction on
finite volume catalogue. Color scale is the same everywhere (dark
blue=-1000 km/s, white=+1000 km/s). Top left: Density field of
the mock catalogue (log scale). Top right: Simulated velocity field,
smoothed with a 5 Mpc/h Gaussian window. White circle: Volume
enclosed by the 40 Mpc/h sphere centered on the observer. Middle left:
PaddedDom velocity field, smoothed equally. Middle right: NaiveDom
velocity field, smoothed equally. The two lower panels give the catter
plots of reconstructed velocities vs simulated velocities. Only objects
inside the white circles have been represented. Lower left: NaiveDom
redshift reconstruction. Right: PaddedDom redshift reconstruction.

V. Undetected diffuse mass
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Figure 5: Diffuse mass – In this plot, we represent the fraction
of the clustered mass below two mass resolution for WMAP1 type
cosmology (h = 0.72, σ8 = 0.9). A BBKS power spectrum has been
used. The curvature of the Universe is kept flat while Ωm varies.
This fraction is plotted for two mass resolution: 2 × 1012 M⊙ and
1011 M⊙ (≃ 5× 109 L⊙). The fraction of mass below both of these
limits is still considerable.
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Figure 6: Here mock catalogues are separated in two phases: the
halo catalogue (M ≥ 1.62 × 1012M⊙) and the background field
(M < 1.62 × 1012M⊙) representing 63% of the total mass. The
higher row of panels represents the line-of-sight component of a
slice of the reconstructed velocity field, smoothed in the same way,
for different correction of the diffuse mass. The lower row of panels
give the scatter distribution of individual reconstructed velocities of
haloes vs simulated ones. Left panels: Result of a reconstruction on
a mock catalogue which only contains the haloes and not the back-
ground field but at the same time conserves the total mass of the
catalogue by reassigning the missing mass to the haloes. Right pan-
els: Result for a reconstruction with a background field composed of
particles placed randomly in the catalogue. Center panels: Result
when one tries to find a optimal compromise between distributing
the missing mass in haloes and randomly in the background field
(here 60% in haloes and the rest in the background).

VI. Direct Application to NBG-3k (Tully et al., 2007)
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Figure 7: Top panels: Reconstructed and measured individual
velocities. This is a preliminary result and β measurement is likely
to be still biased at the moment. Lower left: 3D velocities projected
along the SGZ axis. Lower right: Scatter plot showing that the re-
constructed displacement field Ψrec is really correlated with the one
obtained through direct measurements Vmes. We remind that the
displacement field is proportional to the velocity field in Zel’dovich
approximation. However, a spurious offset is still present.
This reconstructed velocities has been produced assuming

(

M
L

)

spiral
= 100M⊙

L⊙
and

(

M
L

)

elliptical
= 300M⊙

L⊙
(3)

for objects of the NBG-3k catalogue.

VII. Conclusion

•Results:

– Simple padding scheme shows that velocities may be correctly re-
constructed (but a buffer zone of 20 Mpc/h is needed).

– Diffuse mass may be accounted for but more tests on different cosm-
logical simulations are needed to calibrate the way this mass is par-
titioned between haloes and background.

• Problems & Perspective

– Look for better M/Ls to have a higher correlation between recon-
structed and measured velocities.

– Better velocity reconstruction by integrating more non-linearities
due to gravitation along trajectories (i.e. solving exactly the Euler-
Poisson problem, in preparation).
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