Astronomers! Do you know where your galaxies are?

Introducing the Duchamp Source Finder

Matthew Whiting, Australia Telescope National Facility, CSIRO

The Problem: Making the most of your surveys

Large-scale spectral-line radio surveys are an effective way to study populations of galaxies, masers, or sites of star-formation. Surveying on a large scale allows one to both probe to the fainter flux levels and remain sensitive to the rare but interesting objects at the brightest fluxes.

Effective use of large-scale surveys is dictated by the efficiency of detection of the objects of interest. Finding the extreme bright objects is often the easy bit – to find the more typical sources you need to push down to fainter fluxes close to the noise level. The complexity and volume of three-dimensional survey data also requires a large degree of automation and reliability to find the desired sources quickly and in a uniform way.

The Solution: The Duchamp Source Finder

Duchamp is our solution to the problem of three-dimensional source finding. It is a stand-alone software package, designed to work with spectral-line FITS cubes and produce source lists *and* graphical results showing detected objects.

Duchamp is optimised for the case of a large number of separated sources embedded in a cube dominated by noise – the typical situation expected for HI or maser surveys.

Innovations in Searching

A key aspect of source detection is the application of a threshold. This is calculated by using either a simple *n-sigma* cutoff, or derived through the use of the False Discovery Rate method¹,which controls the number of false detections. The statistics for the threshold calculations are obtained through robust methods, and can be measured from the full cube or a specified subset.

Searching in 3D is in general a complex problem. *Duchamp* approaches this by searching in each 2D channel map separately², and comparing detections made in one channel with those in neighbouring channels. An efficient merging algorithm then merges the 2D detections to form 3D objects.

Beating the noise

The limiting factor in detecting faint objects is the background noise, and *Duchamp* provides ways to minimise its effects. Simple smoothing before searching is possible, either spectrally using a Hanning filter, or spatially using a 2D Gaussian kernel.

Alternatively, the cube can be reconstructed using the *à trous* wavelet technique³. This filters the cube at a range of scales, thresholding each scale and only keeping those pixels with significant signal. This very effectively removes noise from the cube, allowing searching to be done on much cleaner data.

horned shape of the resultant main object, and the preservation of the weak features around channels 170 & 900.

References

Figure 2: Example graphical output of *Duchamp* showing the zeroth moment of each detection, in its appropriate spatial location. This is provided as a postscript file and displayed in a PGPLOT window.

Figure 3: Example graphical output showing the spectral nature, the zeroth moment and the basic properties of a letection. A postscript file is produced showing such a plot for each object.

00()#	Naxe	х	,		z	RA	DEC	VEL [km/s]	ω_RA [arcmin]	u_IEC [arcnin]	u_VEL [km/s]	F_int [Jy km/s]	F_peak [Jy/bean]	S/Neax	X1	1(2	Υ1	Y2	Z1	Z2	Npix F1 [pix]	.ag
1	J055156-285539	118.0	35,8	3 73	0 05	51:56.54	-28:55:39.34	-323,437	3,58	20,10	52,765	5,131	0,123	9,53	118	118	34	38	70	74	11	
2	J060929-215751	59,0	140.3	5 114	6 06	:09:29.23	-21:57:51,61	225,113	56,58	43,29	65,957	1467,395	0,213	16,41	52	65	135	145	113	118	169	
3	J054556-214408	140.9	143.0) 114	7 05	:45:56.03	-21:44:08.75	227.293	23.52	20.78	26,383	46.146	0,090	6.93	138	143	141	145	114	116	33	
- 4	J061839-271654	29,5	59.9	3 115	.0 06	:18:39.30	-27:16:54.35	231,217	28,86	23,09	26,383	47,693	0,107	8,25	26	32	57	62	114	116	23	Ε
5	J061738-263227	32.6	71.1	115	4 06	:17:38.61	-26:32:27.67	236.625	61.04	30,20	79,148	712,933	0.117	9.06	- 26	40	68	- 75	113	119	110	Ε
6	J061827-234557	28.6	112.6	\$ 115.	6 06	:18:27.08	-23:45:57.80	238,274	24,51	15,25	26,383	18,895	0,070	5,38	- 26	31	111	114	115	117	21	
- 1	J060458-244700	74.9	38.2	116	3 06	:04:58.37	-24:47:00.29	247.617	20.15	27.89	39,574	78.679	0.109	8.40	75	- 22	35	101	115	118	38	
8	J060724-260826	66.8	11.3	11/	0 06	:07:24.85	-26:08:26.65	256,588	24,21	19.75	26,585	55,721	0,094	7.26	- 54	- 69	-75	- 20	115	118	24	
	3060142-250028	86.0	34.3	118	0 05	01:42.80	-25:00:28.12	263.778	27.99	20.02	26,585	104.411	0,124	9.97	- 25	- 89	35	37	114	119	49	
10	3000230*234647	00.0	00.0	110	4 28	02:30.15	-20140147.10	2/5.1/0	36.04	25.34	00,00/	32.407	0,110	5.10	- 68	- 00	01	- 82	110	122	40	
12	1054741-244975	177 7	02.0	2 110	7 05	47:41 60	-24:40:75 62	279 972	19.34	10.06	20,000	9 779	0.074	0,00 E 71	172	170	20	- 65	110	120		
12	1060729-270410	90.0	64.0	120	0 06	07.29 59	-27:04:10.01	203.372	12.04	11 97	20,300	1 192	0.064	4 91	70	01	67	- 66	110	121	14	
14	1060613-272009	70.9	69.0	1 1 21	3 06	06-13 44	-27.20.09.07	314 462	52 44	43 59	105 531	1101 345	0.150	11 56	65	77	53	63	120	128	146	
15	1061118-213642	52.5	145.5	162	5 06	11-18.98	-21:36:42.33	857.976	28.33	19.55	118,722	1242.024	0.410	31.70	- 49	- 66	143	147	158	167	223	F
16	1060034-285854	89.7	35.3	\$ 202	2 06	00:34.25	-28:58:54.78	1380.526	19,92	24.09	197.870	582,788	0.173	13.35	- 88	- 92	33	38	195	210	234	
17	J055851-263952	95.5	70.0	222	2 05	58:51.96	-26:39:52.50	1645,390	7.98	4.05	65,957	1.137	0.063	4.86	- 95	96	70	70	220	225	10	
18	J061707-272356	34.7	58.3	3 227	8 06	17:07.75	-27:23:56.08	1718,265	16,62	19,53	303,400	108,781	0,093	7,17	- 33	36	57	61	215	238	100	
19	J061523-263345	40.1	71.0	232	2 06	15:23.56	-26:33:46.00	1777.077	12.33	11.69	39,574	11.090	0,068	5.28	- 39	41	- 70	72	231	234	17	
20	J055847-252521	95,8	88,6	\$ 232	3 05	58:47.87	-25:25:21.21	1778,689	23,91	16,14	237,444	182,857	0,115	8,91	- 93	- 98	87	- 90	221	239	140	
21	J060053-214231	88,8	144.3	5 232	9 06	:00:53,96	-21:42:31.77	1785,591	27,95	24,13	211,061	966,685	0,166	12,78	- 86	92	142	147	223	239	297	Ε
22	J060444-260638	75.8	78.3	3 233.	2 06	:04:44.15	-26:06:38.94	1789,930	20.11	19,90	224.253	410.121	0.155	11.93	-74	- 78	76	- 80	224	241	245	
23	J060107-233957	88.0	115.0	235.	5 06	:01:07.39	-23:39:57.83	1820,476	31,94	32,09	277,018	3195,852	0,297	22,92	85	92	112	119	225	246	554	
- 24	J061538-223529	37.8	130.5	5 254	5 06	:15:38.92	-22:35:29.08	2070.321	12.20	7.70	65,967	5,895	0,070	5.38	- 37	- 39	130	131	251	256	17	
25	J061736-230442	31.2	123.0	257	6 06	:17:36.87	-23:04:42.45	2112,295	12,13	3,64	39,574	1,194	0,056	4,29	- 30	32	123	123	256	259	6	
26	J061210-214906	49.6	142.:	\$ 270	1 06	:12:10.23	-21:49:06.41	2276.118	20.28	15.64	408,931	233,455	0,101	7.78	- 47	-51	141	144	256	287	203	
27	J061719-251534	33.1	90.3	\$ 270.	4 06	:17:19.49	-25:15:34.52	2281,139	12,36	11,64	26,383	8,072	0.075	5,80	32	- 34	89	.91	269	271	14	
28	3060925-225127	59.4	151.5	235	5 06	:09:25.70	-22:51:27.05	2612.061	20.60	47.80	52.765	109.813	0.1//	15.68	57	61	127	1.58	293	297	36	
29	J061123-285048	54.1	5/.9	236	3 05	:11:23.82	-28:50:48.52	2622.770	16.9/	4/.//	52.765	40,160	0,103	7.92	- 55	- 56	- 50	41	295	29/	25	-
- 50	3061919-262199	26.9	75.0	237	5 05	19:19.21	-26:21:55.72	2659,640	12,82	25,59	39,974	10,151	0.031	7.05	- 20	28	.12		236	233	14	- 5
- 51	J061619-213508	35.1	145.0	236	3 05	:16:19.11	-21:33:08.35	2656.418	20,22	1.4/	257.444	50,745	0,12/	9.81	- 55	. 57	165	146	295	511	48	E
- 52	J0000006-230621	107.4	20.8	5 367	5 05	00.45.07	-23:56:21,28	3061,794	15.70	20,26	33,074	87,511	0,169	15,05	106	103	13	23	366	363	44	
24	1055154-220720	100.0	177.0	2 434. 5 474	0 00	C1.E4 40	-21:50:44.75	4430.143	12.02	12.02	200,000	74.040	0,234	14.01	110	+04	170	141	420	492	1/	14
25	1061600-264722	20.0	10/.0	5 H04. C E47	2 09	101:04.43	-22:07:28.09	H441,407	12 24	+4,52	79,148	2 270	0,181	4 95	113	121	132	142	431	*3/ 5/0	22	
- 50	3051600-264722		2/-3	2.547	0 00	:10:00.31	-2014/1222.01	0020.007	12.24	1.0/	227214	3.270	0,004	4,33	. 37	- 30	- 22	- 22	240	243		

Figure 4: Typical output to screen at completion of a *Duchamp* run, showing the range of parameters calculated. Other possible outputs include formats for use with Karma software or Virtual Observatory applications.

Obtaining *Duchamp* **and Further Development**

Duchamp is easy to install and run, and is available from http://www.atnf.csiro.au/people/Matthew.Whiting/Duchamp Any and all feedback is welcome!

Duchamp will continue to be developed, particularly in response to users' requirements. It will also form the basis for analysis software under development for use with the Australian SKA Pathfinder.

¹ Miller et al 2001, AJ 122, 3492.
² Using the technique of Lutz 1980, The Computer Journal 23, 262
³ Starke et al 1997, ApJ 482, 1011 is a good example of the technique. *Duchamp* makes use of the PGPLOT, CFITSIO and WCSLIB libraries.
For more information, see the User's Guide, or the forthcoming paper.

Acknowledgements The name Duchamp comes from the renowned Cubists & Dadist artist Marcel Duchamp, who pioneered the art of the readymades, or 'found objects'. The logo at top right is appropriated from Duchamp's 1913 readymade Bicycle Whee!. Curther information ontact: Matthew Whiting hone: +61 2 9372 4683 mail: Matthew Whiting @ csiro.au web: www.atnf.csiro.au/people/Matthew.Whiting/Duchamp www.csiro.au